81 research outputs found

    The symposium: Fundamentals of Criminal Law

    Get PDF
    See abstract in article

    Function Prediction

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. There are still huge gaps in understanding the molecular function of proteins. This raises the question on how we may predict protein function, when little to no knowledge from direct experiments is available. Protein function is a broad concept which spans different scales: from quantum scale effects for catalyzing enzymatic reactions, to phenotypes that manifest at the organism level. In fact, many of these functional scales are entirely different research areas. Here, we will consider prediction of a smaller range of functions, roughly spanning the protein residue-level up to the pathway level. We will give a conceptual overview of which functional aspects of proteins we can predict, which methods are currently available, and how well they work in practice.Comment: editorial responsability: K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Introduction to Protein Structure

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Within the living cell, protein molecules perform specific functions, typically by interacting with other proteins, DNA, RNA or small molecules. They take on a specific three dimensional structure, encoded by its amino acid sequence, which allows them to function within the cell. Hence, the understanding of a protein's function is tightly coupled to its sequence and its three dimensional structure. Before going into protein structure analysis and prediction, and protein folding and dynamics, here, we give a short and concise introduction into the basics of protein structures

    Introduction to Protein Structure

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Within the living cell, protein molecules perform specific functions, typically by interacting with other proteins, DNA, RNA or small molecules. They take on a specific three dimensional structure, encoded by its amino acid sequence, which allows them to function within the cell. Hence, the understanding of a protein's function is tightly coupled to its sequence and its three dimensional structure. Before going into protein structure analysis and prediction, and protein folding and dynamics, here, we give a short and concise introduction into the basics of protein structures.Comment: editorial responsability: Laura Hoekstra, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Function Prediction

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. There are still huge gaps in understanding the molecular function of proteins. This raises the question on how we may predict protein function, when little to no knowledge from direct experiments is available. Protein function is a broad concept which spans different scales: from quantum scale effects for catalyzing enzymatic reactions, to phenotypes that manifest at the organism level. In fact, many of these functional scales are entirely different research areas. Here, we will consider prediction of a smaller range of functions, roughly spanning the protein residue-level up to the pathway level. We will give a conceptual overview of which functional aspects of proteins we can predict, which methods are currently available, and how well they work in practice

    Introduction to Protein Folding

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In this chapter we explore basic physical and chemical concepts required to understand protein folding. We introduce major (de)stabilising factors of folded protein structures such as the hydrophobic effect and backbone entropy. In addition, we consider different states along the folding pathway, as well as natively disordered proteins and aggregated protein states. In this chapter, an intuitive understanding is provided about the protein folding process, to prepare for the next chapter on the thermodynamics of protein folding. In particular, it is emphasized that protein folding is a stochastic process and that proteins unfold and refold in a dynamic equilibrium. The effect of temperature on the stability of the folded and unfolded states is also explained.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Introduction to Protein Folding

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In this chapter we explore basic physical and chemical concepts required to understand protein folding. We introduce major (de)stabilising factors of folded protein structures such as the hydrophobic effect and backbone entropy. In addition, we consider different states along the folding pathway, as well as natively disordered proteins and aggregated protein states. In this chapter, an intuitive understanding is provided about the protein folding process, to prepare for the next chapter on the thermodynamics of protein folding. In particular, it is emphasized that protein folding is a stochastic process and that proteins unfold and refold in a dynamic equilibrium. The effect of temperature on the stability of the folded and unfolded states is also explained

    FAIR Convergence Matrix: Optimizing the Reuse of Existing FAIR-Related Resources

    Get PDF
    The FAIR principles articulate the behaviors expected from digital artifacts that are Findable, Accessible, Interoperable and Reusable by machines and by people. Although by now widely accepted, the FAIR Principles by design do not explicitly consider actual implementation choices enabling FAIR behaviors. As different communities have their own, often well-established implementation preferences and priorities for data reuse, coordinating a broadly accepted, widely used FAIR implementation approach remains a global challenge. In an effort to accelerate broad community convergence on FAIR implementation options, the GO FAIR community has launched the development of the FAIR Convergence Matrix. The Matrix is a platform that compiles for any community of practice, an inventory of their self-declared FAIR implementation choices and challenges. The Convergence Matrix is itself a FAIR resource, openly available, and encourages voluntary participation by any self-identified community of practice (not only the GO FAIR Implementation Networks). Based on patterns of use and reuse of existing resources, the Convergence Matrix supports the transparent derivation of strategies that optimally coordinate convergence on standards and technologies in the emerging Internet of FAIR Data and Services

    From event streams to process models and back: Challenges and opportunities

    Get PDF
    The domains of complex event processing (CEP) and business process management (BPM) have different origins but for many aspects draw on similar concepts. While specific combinations of BPM and CEP have attracted research attention, resulting in solutions to specific problems, we attempt to take a broad view at the opportunities and challenges involved. We first illustrate these by a detailed example from the logistics domain. We then propose a mapping of this area into four quadrants — - two quadrants drawing from CEP to create or extend process models and two quadrants starting from a process model to address how it can guide CEP. Existing literature is reviewed and specific challenges and opportunities are indicated for each of these quadrants. Based on this mapping, we identify challenges and opportunities that recur across quadrants and can be considered as the core issues of this combination. We suggest that addressing these issues in a generic manner would form a sound basis for future applications and advance this area significantly
    corecore